Cook Spectrum® Turbo-Ject®
Peripherally Inserted Central Venous Catheters With Micropuncture®
Peel-Away® Introducers

Instructions for Use
Fig. 1

Fig. 2

Fig. 3
DEVICE DESCRIPTION

The Cook Spectrum Turbo-Ject Peripherally Inserted Central Venous Catheter (PICC) is a polyurethane catheter with a polyurethane suture wing, reinforced polyurethane extensions, and plastic clamps. Catheters can be trimmed to fit the patient’s anatomy. PICC sets and trays also contain a Peel-Away® introducer, appropriately sized access needle, wire guides, injection caps, and other accessories for percutaneous vascular placement.

Cook Spectrum Turbo-Ject Peripherally Inserted Central Venous Catheters are impregnated with the antimicrobial agents minocycline and rifampin. The highest average concentrations (i.e., for the 6 Fr. triple lumen catheter) are 499 µg/cm and 561 µg/cm respectively. The activity of the antimicrobial agents minocycline and rifampin is localized at the internal and external catheter surface, and is not intended for treatment of existing infection. The antimicrobial agents, minocycline and rifampin, have a yellow and an orange appearance; therefore, some coloration of the catheter is normal.

Single Lumen Catheters

<table>
<thead>
<tr>
<th>Catheter</th>
<th>Outer Diameter</th>
<th>Inner Diameter</th>
<th>Lumen Vol. (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Inch Gage</td>
<td>Inch Gage</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.066 15</td>
<td>0.048 17</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Double Lumen Catheter

<table>
<thead>
<tr>
<th>Catheter</th>
<th>Outer Diameter</th>
<th>Inner Diameter (each lumen)</th>
<th>Lumen Vol. (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Inch Gage</td>
<td>Inch Gage</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.066 15</td>
<td>0.024/0.048 /18</td>
<td>0.72</td>
</tr>
</tbody>
</table>

INTENDED USE

Cook Spectrum Turbo-Ject Peripherally Inserted Central Venous Catheter (PICC) Sets are intended for short- or long-term use for venous pressure monitoring, blood sampling, administration of drugs and fluids, and for use with power injectors for delivery of contrast in CT studies. The catheter is impregnated with the antimicrobials minocycline and rifampin to help provide protection against catheter-related bloodstream infections (CRBSIs).

The Cook Spectrum Turbo-Ject PICC is indicated for multiple injections of...
contrast media through a power injector. The maximum pressure limit setting for Power Injectors used with the Spectrum Turbo-Ject PICC may not exceed 325 psi and the flow rate may not exceed the maximum flow rate indicated, as shown on the following table.

<table>
<thead>
<tr>
<th>Catheter Size</th>
<th>Maximum Flow Rate*</th>
<th>Injection Pressure Limit Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Fr Single Lumen</td>
<td>7 mL/sec</td>
<td>325 psi</td>
</tr>
<tr>
<td>5 Fr Double Lumen</td>
<td>5 mL/sec</td>
<td>325 psi</td>
</tr>
</tbody>
</table>

*Flow rates achieved using room temperature Omnipaque® 300 contrast and verified using a MEDRAD® Stellant® CT injector system. Omnipaque 300 has a viscosity of 11.8 centipoise at room temperature (20 degrees C). A change in temperature or viscosity of the contrast medium used will result in a change in achievable flow rates.

**Lumen #1 only.

MEDRAD and Stellant are registered trademarks of MEDRAD, Inc. Omnipaque® 300 is a registered trademark of GE Healthcare.

CONTRAINDICATIONS

- Allergy or history of allergy to tetracyclines (including minocycline) or rifampin

NOTE: Because the Cook Spectrum Turbo-Ject Peripherally Inserted Central Venous Catheter is impregnated with a combination of the antimicrobial agents minocycline (a derivative of tetracycline) and rifampin (a derivative of rifamycin B), the contraindications, warnings, and precautions regarding use of these antimicrobials apply and should be adhered to for use of this device, although systemic levels of minocycline and rifampin in patients receiving this device are highly unlikely to result from their use.

- Minocycline and rifampin are agents that do not induce any genotoxic risk except a possible teratogenic effect in pregnant women. We therefore do not recommend the use of Spectrum or Spectrum Glide catheters in pregnant women.

WARNINGS

- Peripherally Inserted Central Venous Catheters play an important role in treatment of critically ill patients. However, catheter tips can erode or perforate vascular walls. Extreme caution must be used in placement and monitoring of catheters.

- Catheter tip position should be verified by X-ray and monitored on a routine basis. Periodic lateral view X-ray is suggested to assess tip location in relation to vessel wall. Tip position should appear to be parallel to vessel wall. (Reference 1)

- The safe and effective use of Spectrum Turbo-Ject PICC lines with power injector pressures set above 325 psi has not been established.

- Do not power inject if maximum injection rate cannot be verified to meet limit printed on catheter hub or extension tube.

- To safely use Spectrum Turbo-Ject PICC lines with a power injector, the technician/health care professional must verify prior to use that the
The maximum pressure limit is set at or below 325 psi and that the maximum flow rate is at or below that which is listed on the catheter. Dynamic and static pressure test results are shown in the following table.

- Development of a hypersensitivity reaction should be followed by removal of the catheter and appropriate treatment at the discretion of the physician.
- In rare cases, hepatotoxicity, systemic lupus erythematosus and exacerbation of porphyria have been associated with the systemic use of minocycline and/or rifampin.

NOTE: The Spectrum Turbo-Ject PICC should not supersede strict aseptic techniques as it relates to catheter placement and maintenance.

Cook Spectrum Turbo-Ject Power Injectable PICC Dynamic and Static Pressure Results

<table>
<thead>
<tr>
<th>French/Lumen</th>
<th>Priming Volume (mL)</th>
<th>Maximum Labeled Flow Rate (mL/sec)</th>
<th>Average Maximum Catheter Pressure During Maximum Flow (psi)*</th>
<th>Average Static Burst Pressure in 37°C Water (psi)**</th>
<th>Range of Static Burst Pressure in 37°C Water (psi)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0/Single</td>
<td>1.00</td>
<td>7</td>
<td>120</td>
<td>207</td>
<td>204-210</td>
</tr>
<tr>
<td>5.0/Double</td>
<td>0.72</td>
<td>5</td>
<td>151</td>
<td>230</td>
<td>220-245</td>
</tr>
</tbody>
</table>

*Maximum flow rate pressures are determined with pump safety cut-off set at 325 psi, using contrast media with a viscosity of 11.8 cP.

**Static burst pressure is the failure point of the catheter when totally occluded. WARNING: Power injector machine pressure limiting feature may not prevent over-pressurization of an occluded catheter.

***Lumen #1 only.

PRECAUTIONS

- This product is intended for use by physicians trained and experienced in the placement of central venous catheters using percutaneous entry (Seldinger) technique. Standard Seldinger technique for placement of percutaneous vascular access sheaths, catheters and wire guides should be employed during the placement of a central venous catheter.
- Select puncture site and length of catheter needed by assessing patient anatomy and condition.
- If lumen flow is impeded, do not force injection or withdrawal of fluids. Notify attending physician immediately.
- Patient movement can cause catheter tip displacement. Catheters placed via an antecubital vein have shown tip movement of up to 10 cm with motion of the extremity.
- Catheter size should be as small as the use will allow.

NOTE: Prior to insertion, the Spectrum Catheter shaft should not be wiped with or immersed in ethyl alcohol, isopropyl alcohol, or other alcohols, acetone or other non-polar solvents. These solvents may remove the
antimicrobial from the catheter and reduce the catheter’s antimicrobial efficacy.

NOTE: Controlled clinical trials of Spectrum PICC catheters in pregnant women, pediatric, and neonatal populations have not been conducted. The benefits of the use of Spectrum PICCs should be weighed against possible risks.

CLINICAL STUDIES (Reference 2)

To evaluate efficacy of the Cook Spectrum Silicone Catheter in reducing the incidence of catheter-related bloodstream infection, a prospective, randomized clinical trial was conducted in which 356 patients were enrolled to receive either a Cook Spectrum Silicone Catheter or a non-impregnated silicone control catheter. A total of 182 patients received Spectrum Silicone Catheters, and 174 received control catheters. Patient characteristics (age, sex, underlying disease, degree of immunosuppression, therapeutic interventions, site of insertion, complications, and reason for catheter removal) were comparable for the two groups. Mean catheter dwell time was comparable for the two groups (66 ± 31 days for the Cook Spectrum Silicone Catheter and 63 ± 31 days for the control, p = .003).

Catheters Used in the Clinical Study

<table>
<thead>
<tr>
<th>Type of Catheter</th>
<th>Control Cohort</th>
<th>Treatment Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-Lumen Subclavian</td>
<td>84 (48%)</td>
<td>84 (46%)</td>
</tr>
<tr>
<td>Single-Lumen Subclavian</td>
<td>24 (14%)</td>
<td>34 (19%)</td>
</tr>
<tr>
<td>PICC Line</td>
<td>66 (38%)</td>
<td>64 (35%)</td>
</tr>
<tr>
<td>Total</td>
<td>174 (100%)</td>
<td>182 (100%)</td>
</tr>
</tbody>
</table>

Results from the clinical study showed a statistically significant decrease in the incidence of catheter-related bloodstream infection in patients receiving the Cook Spectrum Silicone Catheter, with infections occurring in 3 of 182 patients (2%) as compared to 14 of 174 patients (8.0%) for the control catheter (p = .005).

Organisms isolated from patients having catheter-related bloodstream infection in the treatment cohort included *Candida parapsilosis* and *Klebsiella pneumonia*. Testing of isolates revealed no evidence of resistance to minocycline or rifampin developed.

Blood samples obtained from 9 patients at 1-2 days after insertion of the Cook Spectrum Silicone Catheter were assayed for minocycline and rifampin by high-performance liquid chromatography (HPLC) analysis. No detectable systemic levels of minocycline or rifampin were observed (limit of detection = 1.0 µg/mL for both antimicrobials).

The rates of catheter-related bloodstream infection (calculated according to CDC definition) were 0.24 per 1,000 catheter-days for treatment catheters and 1.30 per 1,000 catheter-days for control catheters. Kaplan-Meier survival analysis indicated that Cook Spectrum Silicone Catheters were, over time, associated with a significantly lower risk of catheter-related bloodstream infection than the control catheters (p = 0.003 by log-rank test).
Kaplan-Meier Survival Curves for Freedom from Catheter-Related Bloodstream Infection (CRBSI)

Discussion of Antimicrobial Activity
Antimicrobial activity associated with the Cook Spectrum Silicone Central Venous Catheter over time has been demonstrated in the following way:
The length of activity of the antibiotics was established during *in vitro* zone of inhibition testing after suspension in saline at 37 degrees C. Antimicrobial activity in the 7.0 French double-lumen catheter was demonstrated for at least 28 days against *Staphylococcus epidermidis*, the most common organism implicated in catheter-related infection.

PRODUCT RECOMMENDATIONS
Catheter Size and Puncture Site
Preliminary reports indicate that catheter size can influence clotting. Larger diameter catheters have more tendency to promote clots. As reported by Amplatz, Gianturco and others, clot formation has less relation to type of catheter material than to size of catheter.
The angle of the catheter tip to the vessel wall should be checked carefully. Blackshear reviewed the medical literature of catheter perforations, which have confirming X-rays, and found that an incident angle of the catheter to vessel wall greater than 40 degrees was more likely to perforate. *(Reference 3)*
The following variables must also be considered in selecting appropriate catheter and length:
1. Patient history
2. Patient age and size
3. Access site available
4. Unusual anatomical variables
5. Proposed use and duration of treatment plan
Catheter Tip Positioning

Verify catheter tip position using radiography or appropriate technology. In order to guarantee extrapericardial location, the catheter tip should be located above the SVC-RA junction, within the lower 1/3 of the SVC. Every effort must be made to ascertain proper tip position in order to prevent erosion or perforation of the central venous system and to ensure proper delivery of infusates.

Catheter Maintenance

Catheter entry site must be prepared and maintained in a manner consistent with standard procedure for central venous catheterization. After catheter placement and prior to use, tip position and lumen patency should be confirmed by free aspiration of venous blood. If blood is not freely aspirated, catheter tip position should be immediately reevaluated by physician. If catheter is not to be used immediately, its lumen should be maintained by continuous saline or heparinized saline drip or locked with heparinized saline solution. NOTE: If CLC 2000, MicroClave or other needleless adapters approved for saline only lock are used, saline only catheter lock may be used. Catheter heparinization should be determined by institutional protocol and clinical judgement. Heparin concentrations of 10 Units/mL to 100 Units/mL have been reported adequate to maintain lumen patency. (Reference 4) Heparin lock should be reestablished after every use, every 24 hours, or in accordance with the approved facility protocol if catheter is
unused. Before using catheter lumen already locked with heparin, lumen should be flushed with twice the indicated lumen volume using normal saline. Lumen should be flushed with normal saline between administration of different infusates. After use, lumen should again be flushed with twice the indicated lumen volume using normal saline before reestablishing heparin lock. Strict aseptic technique must be adhered to while using and maintaining catheter.

MicroCLAVE is a registered trademark of ICU Medical, Inc.

INSTRUCTIONS FOR USE

Catheter Obturator Preparation

1. Flush catheter with saline solution or sterile water. **NOTE:** The catheter may be trimmed. If trimming the catheter, be sure to pull back on the obturator prior to trimming the catheter.

2. To flush catheter, attach a syringe with saline or sterile water to the catheter obturator sidearm.

3. Inject enough solution to wet the obturator surface entirely. This will activate the AQ® hydrophilic coating, making the obturator surface very lubricious. **NOTE:** If the surface of the obturator becomes dry after removal from the sidearm, wetting with additional saline or sterile water will renew the hydrophilic effect.

4. The catheter obturator assembly can now be introduced as described in the following section.

Catheter Placement (Fluoroscopic Method)

6. After prepping the access site, introduce the access needle into the vessel. **NOTE:** The use of ultrasound is helpful to determine suitability for vessel access and patency. The EchoTip® marking on the needle is used to help visualize the tip of the needle during vessel access.

7. Using fluoroscopic guidance, introduce the wire guide through the needle and advance it 15-20 cm into the vessel.

8. Withdraw the needle, leaving wire guide in place. If necessary, enlarge the puncture site with scalpel blade.

9. Introduce the Peel-Away introducer assembly (sheath and dilator) over the wire guide. With a twisting motion, advance the assembly into the vessel. (Fig. 1)

10. Using fluoroscopic control, determine the correct catheter length by advancing the wire guide to the desired catheter tip location. Once the wire guide tip is in proper position, mark the length by clamping forceps onto the wire guide at the skin site.

11. Withdraw the wire guide and measure it from the forceps to the distal tip to determine correct catheter length. Trim catheter if necessary. **NOTE:** Remove obturator prior to trimming the catheter; reinsert for catheter introduction.

12. Leaving the sheath in place, remove the dilator. (Fig. 2) **NOTE:** To prevent inadvertent air aspiration after removing wire guide and dilator, place thumb or finger over the cuffed proximal end of the sheath.

13. Introduce the catheter/obturator assembly into the sheath as far as possible. **NOTE:** Resistance may be felt approximately 1-2 cm distal to the catheter suture wing when introducing the assembly into the sheath due to an increase in outer diameter. (Fig. 3)
14. Peel the sheath away from the catheter by grasping the two wings of the sheath and pulling outward and upward. **NOTE:** Final catheter position is accomplished by alternately advancing the catheter into the sheath and then further pulling on the two wings. Once the sheath is removed, a slight advancement of the catheter may be needed for final positioning.

15. After catheter is in final position, remove obturator and obturator sidearm, then cap and flush catheter. Secure catheter to skin and dress per protocol.

16. Verify catheter tip position using radiography or appropriate technology. In order to guarantee extrapericardial location, the catheter tip should be located above the SVC-RA junction, within the lower 1/3 of the SVC.

Catheter Placement (Non-Fluoroscopic Method)

17. After prepping the access site, introduce the access needle into the vessel. **NOTE:** The use of ultrasound is helpful to determine suitability for vessel access and patency. The EchoTip® marking on the needle is used to help visualize the tip of the needle during vessel access.

18. Introduce the wire guide through the needle and advance it 15-20 cm into the vessel.

19. Withdraw the needle, leaving wire guide in place. If necessary, enlarge the puncture site with scalpel blade.

20. Introduce the Peel-Away introducer assembly (sheath and dilator) over the wire guide. With a twisting motion, advance the assembly into the vessel. ([Fig. 1](#fig1))

21. Using a tape measure, clinical judgment, or other institutional protocol, determine the correct catheter length and trim catheter as needed. **NOTE:** Remove obturator prior to trimming catheter; reinsert for catheter introduction.

22. Leaving the sheath in place, remove the dilator. ([Fig. 2](#fig2)) **NOTE:** To prevent inadvertent air aspiration after removing wire guide and dilator, place thumb or finger over the cuffed proximal end of the sheath.

23. Introduce the catheter/obturator assembly into the sheath as far as possible. **NOTE:** Resistance may be felt approximately 1-2 cm distal to the catheter suture wing when introducing the assembly into the sheath due to an increase in outer diameter. ([Fig. 3](#fig3))

24. Peel the sheath away from the catheter by grasping the two wings of the sheath and pulling outward and upward. **NOTE:** Final catheter position is accomplished by alternately advancing the catheter into the sheath and then further pulling on the two wings. Once the sheath is removed, a slight advancement of the catheter may be needed for final positioning.

25. After catheter is in final position, remove obturator and obturator sidearm, then cap and flush catheter. Secure catheter to skin and dress per protocol.

26. Verify catheter tip position using radiography or appropriate technology. In order to guarantee extrapericardial location, the catheter tip should be located above the SVC-RA junction, within the lower 1/3 of the SVC.

Power Injection Procedure

1. Confirm proper catheter tip position radiographically prior to injection.

2. Remove any injection/needleless caps from the Spectrum Turbo-Ject PICC.
3. Attach a 10 mL (or larger) syringe filled with sterile normal saline to the hub of the extension tube to be used for power injection.
4. Ensure adequate blood return and flush catheter vigorously with the entire 10 mL of sterile normal saline to ensure lumen patency.
 WARNING: Failure to ensure patency of the catheter lumen prior to injection may result in catheter failure.
5. Remove syringe and attach power injection device to the catheter using the manufacturer’s recommendations.
6. Conduct study using the power injector, making sure not to exceed the maximum flow rate or pressure limit for the catheter.
7. Disconnect the power injection device and flush the catheter again with 10 mL of sterile normal saline.
8. Place a new injection/needleless cap on the Spectrum Turbo-Ject PICC, flush and lock the catheter with saline or heparinized saline per institutional protocol.
9. Confirm proper catheter tip position radiographically following power injection.

HOW SUPPLIED
Supplied sterilized by ethylene oxide gas in peel-open packages. Intended for one-time use. Sterile if package is unopened or undamaged. Do not use the product if there is doubt as to whether the product is sterile. Store in a dark, dry, cool place. Avoid extended exposure to light. Upon removal from package, inspect the product to ensure no damage has occurred.

REFERENCES
These instructions for use are based on experience from physicians and (or) their published literature. Refer to your local Cook sales representative for information on available literature.
